

Invariant Bilinear form

Casimir element

IF V IS A g -MODULE A SYMMETRIC BILINEAR FORM

(1): $V \times V \rightarrow \mathbb{C}$ IS **INARIANT** IF

$$([x, y] | z) = (x | [y, z])$$

$$([x, y] | z) = - (y | [x, z])$$

IF $g = \text{Lie}(G)$ AND

$$(gx | gy) = (x | y) \text{ THEN}$$

IT IS INARIANT FOR THE INDUCED g REP'

$$0 = \frac{d}{dt} (e^{tx} v | e^{ty} w) = (x \cdot v | w) + (v | x \cdot w).$$

EXAMPLE: IF g IS A F.D. SIMPLE LIE ALGEBRA
THE KILLING FORM IS AN INARIANT BILINEAR
FORM ON g . $(x | y) = \text{tr}(\text{ad}x \text{ad}y)$.
(SIMPLE \Rightarrow NON DEGENERATE.)

THE CASIMIR OPERATOR.

THE CASE OF A FINITE-DIMENSIONAL SIMPLE LIE ALGEBRA.

IN THIS CASE THE CASIMIR $\Omega \in U(\mathfrak{g})$.

LET x_i BE A BASIS OF \mathfrak{g}

x^i DUAL BASIS.

ASSUMING (1) IS A ad -INVARIANT SYMMETRIC BILINEAR FORM ON \mathfrak{g} .

$$\Omega = \sum x_i x^i.$$

THEOREM: Ω IS INDEPENDENT OF BASIS AND Ω COMMUTES WITH \mathfrak{g}

(IN THIS CASE THAT IS THE SAME AS SAYING

$$\Omega \in Z(U(\mathfrak{g}))$$

OMIT VERIFICATION INDEPENDENT OF BASIS.

$$[z, x_i] = \sum_j c_{ij} x_j$$

$$[z, x^i] = \sum_j d_{ij} x^j$$

$$([z, x_i] | x^i) = c_{ij}$$

$$- (x_i | [z, x^i]) = -d_{ji}$$

$$\sum c_{ij} x^i$$

$$\text{so } c_{ij} = -d_{ji}$$

$$[z, x_i] = \sum_j c_{ij} x_j$$

$$[z, x^i] = - \sum_j c_{ji} x^i$$

$$[z, \Omega] = \sum_i [z, x_i] x^i + x_i [z, x^i]$$

$$= \sum_{i,j} c_{ij} x_j x^i + \sum_i x_i (-c_{ji}) x^i = 0.$$

THIS MEANS IF V IS IRREDUCIBLE, Ω ACTS BY A SCALAR.

ALSO TRUE FOR MORE GENERAL REP'S E.G.
HIGHEST WEIGHT MODULES.

IF μ IS A PRIMITIVE WEIGHT IN $M(\lambda)$
 λ ACTS BY SAME SCALAR ON $M(\mu)$, $M(\lambda)$.
 THIS CAN HELP FIND PRIMITIVE VECTORS
 IF WE KNOW HOW THE SCALAR DEPENDS
 ON λ .

$0 \rightarrow M(\mu) \rightarrow M(\lambda) \rightarrow L(\lambda) \rightarrow 0$
 2nd CASE.

LEMMA: IF (1) IS INVARIANT
 BILINEAR FORM ON \mathfrak{g} AND

$$\mathfrak{g} = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_\alpha \quad \mathfrak{g}_0 = \mathfrak{g}$$

IF $x \in \mathfrak{g}_\alpha$ AND $y \in \mathfrak{g}_\beta$, THEN $(x, y) = 0$. . . IF $\alpha \in \Delta$.
 UNLESS $\alpha = -\beta$.

IF $\alpha \neq -\beta$ FIND $H \in \mathcal{Y}$ WITH
 $\alpha(H) \neq -\beta(H)$

$$([H, x] | y) = - (x | [H, y])$$

$$\overset{||}{\alpha}(H)(x | y) \quad \overset{||}{-\beta}(H)(x | y)$$

THEOREM: IF V IS A HW
MODULE WITH WEIGHT λ , Ω
ACTS AS A SCALAR ON V WITH
VALUE

$$(\lambda | \lambda + \Omega).$$

FIND BASIS H_i OF \mathfrak{g}

$x_\alpha \in \mathcal{X}_\alpha$ DUAL BASIS.

$\alpha \in \Delta \ (\alpha \neq 0)$ $H^\alpha \in \mathfrak{g}^*$, $x^\alpha \in \mathcal{X}_{-\alpha}$

SINCE $\alpha \neq 0$, $\alpha \neq -\alpha$ SO WE MAY

CHOOSE $x^\alpha = x_\alpha$ THEN

$$(x_\alpha | x_\beta) = \delta_{\alpha, -\beta} \quad (H_i | H_j) = \delta_{ij}.$$

THEOREM: IF V IS A HIGHEST WEIGHT

MODULE WITH HIGHEST WEIGHT λ

AND SCALAR EIGENVALUE OF Ω IS $(\lambda | \lambda + 2\rho)$.

$$\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$$

WE'LL SHOW $\Omega v_\lambda = (\lambda | \lambda + 2\rho) v_\lambda$ FOR HW v_λ .

SINK IS COMMUTES WITH Ω .

LET H_i BASIS OF \mathfrak{g} , H^α DUAL BASIS OF \mathfrak{g}^* .

$$\Omega = \sum_i H_i H^i + \sum_{\alpha \in \Delta^+} x_{-\alpha} X_\alpha + \underline{x_\alpha X_{-\alpha}}$$

NOTICE $[x_\alpha, X_{-\alpha}] := H_\alpha \in \mathfrak{g}$.

I WANT TO WRITE

$$\Omega = \sum_{\alpha \in \Delta^+} H_\alpha H^{\alpha} + \sum_{\alpha \in \Delta^+} H_\alpha + 2 \sum_{\alpha \in \Delta^+} x_{-\alpha} X_\alpha$$

THIS IS THE EXPRESSION THAT WILL
GENERALIZE TO KM CASE.

NOTICE IF Ωv_λ THE LAST TERM

PRODUCES ZERO BECAUSE $\alpha \in \Delta^+$

$$x_\alpha v_\lambda = 0 \text{ SINCE } X_\alpha \in \mathbb{N}_+,$$

$$\begin{aligned} \text{WE HAVE TO PROVE } & \left(\sum H_\alpha \right) v_\lambda \\ &= (\lambda \text{ if } \alpha \in \Delta^+) v_\lambda \end{aligned}$$

AND $\sum h_i | h^* v_\lambda = (x | \lambda) v_x$.

THERE IS AN ISOMORPHISM

$$\gamma: \mathcal{G} \rightarrow \mathcal{G}^* \quad \langle \mathcal{G}, \mathcal{G}^* \rangle$$

$$(x, \gamma(y)) = (x | y) \cdot$$

$\mathcal{G} \quad \mathcal{G}^*$

$$(y | y) \quad (\mathcal{G}^* | \mathcal{G}^*) \quad (1)$$

INNER
PRODUCT

$$(\gamma(\lambda) | \gamma(\mu)) = (\lambda | \mu)$$

γ IS 150 AND $\{|\}$ IS NORMA

LEMMA: $\gamma(h_\alpha) = \alpha$

NEED TO KNOW $h_\alpha = [x_\alpha, x_{-\alpha}]$

AND $(x_\alpha | x_{-\alpha}) = 1$ SO

$$\begin{aligned}
 &= \langle H, \nu(H_\alpha) \rangle = (H \setminus H_\alpha) \\
 &\quad \text{by } \text{def} \quad \text{''} \\
 &\quad (H \setminus [x_\alpha, x_{-\alpha}]) \\
 &= ([H, x_\alpha] \setminus x_{-\alpha}) \quad \dots \\
 &= \alpha(H) (x_\alpha) x_{-\alpha} \\
 &= \alpha(H) \\
 &= \langle H, \alpha \rangle
 \end{aligned}$$

SINCE THIS IS TRUE FOR ALL H ,

$$\gamma(H_\varepsilon) = \alpha.$$

$$h = \sum_{\alpha \in \Delta^+} H_\alpha H^\vee + \sum_{\alpha \in \Delta^+} H_\alpha + 2 \sum_{\alpha \in \Delta^+} x_{-\alpha} x_\alpha$$

$$= \sum H_{\alpha} H^{\alpha} + \gamma \left(\sum_{\alpha \in \Delta^+} \alpha \right) + 2 \sum x_{-\alpha} x_{\alpha}$$

\uparrow \uparrow \uparrow
 still
myselfous. $\gamma(2\rho)$ thus γ .

LEMMA: IF $\lambda, \mu \in \mathbb{Z}^*$

$$\sum \lambda(H_{\alpha}) \mu(H^{\alpha}) = (\lambda | \mu).$$

PROOF:

$$H = \sum (H | H^{\alpha}) H_{\alpha}$$

$$(H | H') = \sum (H | H^{\alpha}) (H' | H_{\alpha}) \quad \checkmark$$

$$(\lambda | \mu) = (\gamma^*(\lambda) | \gamma^*(\mu))$$

$$= \sum (\gamma^*(\lambda) | H_{\alpha}) (\gamma^*(\mu) | H^{\alpha})$$

$$(\lambda | \mu) = \sum \lambda(H_i) \mu(H^i) .$$

$$= \left(\sum H_i H^i + \gamma \left(\sum_{\alpha \in \Delta^+} \alpha \right) + 2 \sum x_{-\alpha} x_\alpha \right) v_\lambda$$

$$H v_\lambda = \lambda(H) v_\lambda$$

$$\sum \lambda(H_i) \lambda(H^i) v_\lambda$$

$$+ \gamma(2\rho) v_\lambda + \text{zero}$$

$$\left\{ (\lambda | \lambda) + (\lambda | 2\rho) \right\} v_\lambda$$

As ADVERTISED.

START ON KM CASE.

DEFINE THE INNER PRODUCT ON \mathfrak{g} :

(ASSUME C.M. IS SYMMETRIC

NEED SYMMETRIZABLE $A = D \cdot B$.)

$$\begin{pmatrix} \varepsilon_1 & \dots & \varepsilon_r \end{pmatrix}^T$$

THEOREM: THERE IS AN INVARIANT

I.P. ON \mathfrak{g}_+ OR \mathfrak{g}_- :

$$(\alpha_i^\vee | \alpha_j^\vee) = \delta_{ij}$$

$$(\alpha_i^\vee | \alpha_j) = \delta_{ij}$$

(α_i^\vee DON'T SPAN \mathfrak{g}_+)

ASSUMING THIS WE CAN DEFINE
 CASIMIR ELEMENT ON ANY MODULE IN
 CATEGORY \mathcal{O} . LET H_i, H^i BE
 DUAL BASES OF \mathfrak{g} . X_α^i BE
 BASES OF \mathfrak{X}_α \sim 1-DIM FOR
 REAL ROOTS
 BUT NOT 1-DIM
 IN CENTER

$$\Omega = \sum H_i H^i + 2 \sum_{\gamma \in \Delta^+} X_\alpha^i X_\alpha^j + 2V(p)$$

$$\begin{array}{cc} x_\alpha & x_{-\alpha} \\ x_\alpha^i & x_{-\alpha}^j \end{array}$$